There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{(x - 2)}^{4}}{3} - \frac{2{x}^{2}}{9}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x^{4} - \frac{8}{3}x^{3} + \frac{70}{9}x^{2} - \frac{32}{3}x + \frac{16}{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x^{4} - \frac{8}{3}x^{3} + \frac{70}{9}x^{2} - \frac{32}{3}x + \frac{16}{3}\right)}{dx}\\=&\frac{1}{3}*4x^{3} - \frac{8}{3}*3x^{2} + \frac{70}{9}*2x - \frac{32}{3} + 0\\=&\frac{4x^{3}}{3} - 8x^{2} + \frac{140x}{9} - \frac{32}{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{4x^{3}}{3} - 8x^{2} + \frac{140x}{9} - \frac{32}{3}\right)}{dx}\\=&\frac{4*3x^{2}}{3} - 8*2x + \frac{140}{9} + 0\\=&4x^{2} - 16x + \frac{140}{9}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !