There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{k}{sqrt(ln(x))})(1 - \frac{ln(x)}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{k}{sqrt(ln(x))} - \frac{\frac{1}{2}kln(x)}{sqrt(ln(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{k}{sqrt(ln(x))} - \frac{\frac{1}{2}kln(x)}{sqrt(ln(x))}\right)}{dx}\\=&\frac{k*-\frac{1}{2}}{(ln(x))(x)(ln(x))^{\frac{1}{2}}} - \frac{\frac{1}{2}k}{(x)sqrt(ln(x))} - \frac{\frac{1}{2}kln(x)*-\frac{1}{2}}{(ln(x))(x)(ln(x))^{\frac{1}{2}}}\\=&\frac{k}{4xln^{\frac{1}{2}}(x)} - \frac{k}{2xsqrt(ln(x))} - \frac{k}{2xln^{\frac{3}{2}}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !