There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{x{\frac{1}{b}}^{2}}{({({b}^{2} + {x}^{2})}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(b^{2} + x^{2})^{\frac{1}{2}}b^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(b^{2} + x^{2})^{\frac{1}{2}}b^{2}}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(0 + 2x)}{(b^{2} + x^{2})^{\frac{3}{2}}})x}{b^{2}} + \frac{1}{(b^{2} + x^{2})^{\frac{1}{2}}b^{2}}\\=&\frac{-x^{2}}{(b^{2} + x^{2})^{\frac{3}{2}}b^{2}} + \frac{1}{(b^{2} + x^{2})^{\frac{1}{2}}b^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !