There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{9y}{(5y - 1)} + 4y + \frac{(3{y}^{2})}{(5y - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{9y}{(5y - 1)} + 4y + \frac{3y^{2}}{(5y - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{9y}{(5y - 1)} + 4y + \frac{3y^{2}}{(5y - 1)}\right)}{dx}\\=&9(\frac{-(0 + 0)}{(5y - 1)^{2}})y + 0 + 0 + 3(\frac{-(0 + 0)}{(5y - 1)^{2}})y^{2} + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !