There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -0.00002{x}^{5} + 0.0012{x}^{4} - 0.0237{x}^{3} + 0.1938{x}^{2} - 0.6692x + 18.763\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -0.00002x^{5} + 0.0012x^{4} - 0.0237x^{3} + 0.1938x^{2} - 0.6692x + 18.763\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -0.00002x^{5} + 0.0012x^{4} - 0.0237x^{3} + 0.1938x^{2} - 0.6692x + 18.763\right)}{dx}\\=&-0.00002*5x^{4} + 0.0012*4x^{3} - 0.0237*3x^{2} + 0.1938*2x - 0.6692 + 0\\=&-0.0001x^{4} + 0.0048x^{3} - 0.0711x^{2} + 0.3876x - 0.6692\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -0.0001x^{4} + 0.0048x^{3} - 0.0711x^{2} + 0.3876x - 0.6692\right)}{dx}\\=&-0.0001*4x^{3} + 0.0048*3x^{2} - 0.0711*2x + 0.3876 + 0\\=&-0.0004x^{3} + 0.0144x^{2} - 0.1422x + 0.3876\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !