Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{a}^{x}}{ln({\frac{1}{cos(x)}}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{a}^{x}}{ln(\frac{1}{cos^{2}(x)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{a}^{x}}{ln(\frac{1}{cos^{2}(x)})}\right)}{dx}\\=&\frac{({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{ln(\frac{1}{cos^{2}(x)})} + \frac{{a}^{x}*-2sin(x)}{ln^{2}(\frac{1}{cos^{2}(x)})(\frac{1}{cos^{2}(x)})cos^{3}(x)}\\=&\frac{{a}^{x}ln(a)}{ln(\frac{1}{cos^{2}(x)})} - \frac{2{a}^{x}sin(x)}{ln^{2}(\frac{1}{cos^{2}(x)})cos(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return