There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - x)({e}^{x}) - 2({x}^{2})({e}^{x}) + 4x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x} - x{e}^{x} - 2x^{2}{e}^{x} + 4x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x} - x{e}^{x} - 2x^{2}{e}^{x} + 4x\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - {e}^{x} - x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2*2x{e}^{x} - 2x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 4\\=& - 5x{e}^{x} - 2x^{2}{e}^{x} + 4\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !