Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2x - 1)}{(x{e}^{2} - 2x + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x}{(xe^{2} - 2x + 1)} - \frac{1}{(xe^{2} - 2x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x}{(xe^{2} - 2x + 1)} - \frac{1}{(xe^{2} - 2x + 1)}\right)}{dx}\\=&2(\frac{-(e^{2} + x*2e*0 - 2 + 0)}{(xe^{2} - 2x + 1)^{2}})x + \frac{2}{(xe^{2} - 2x + 1)} - (\frac{-(e^{2} + x*2e*0 - 2 + 0)}{(xe^{2} - 2x + 1)^{2}})\\=&\frac{-2xe^{2}}{(xe^{2} - 2x + 1)^{2}} + \frac{4x}{(xe^{2} - 2x + 1)^{2}} + \frac{e^{2}}{(xe^{2} - 2x + 1)^{2}} + \frac{2}{(xe^{2} - 2x + 1)} - \frac{2}{(xe^{2} - 2x + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return