There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{x}e^{x}e^{x}e^{x}e^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{{x}*{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{x}*{5}}\right)}{dx}\\=&5e^{{x}*{4}}e^{x}\\=&5e^{{x}*{5}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5e^{{x}*{5}}\right)}{dx}\\=&5*5e^{{x}*{4}}e^{x}\\=&25e^{{x}*{5}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 25e^{{x}*{5}}\right)}{dx}\\=&25*5e^{{x}*{4}}e^{x}\\=&125e^{{x}*{5}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 125e^{{x}*{5}}\right)}{dx}\\=&125*5e^{{x}*{4}}e^{x}\\=&625e^{{x}*{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !