There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -e^{-x}sin(2)x + 2e^{-x}cos(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -xe^{-x}sin(2) + 2xe^{-x}cos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -xe^{-x}sin(2) + 2xe^{-x}cos(2)\right)}{dx}\\=&-e^{-x}sin(2) - xe^{-x}*-sin(2) - xe^{-x}cos(2)*0 + 2e^{-x}cos(2) + 2xe^{-x}*-cos(2) + 2xe^{-x}*-sin(2)*0\\=&-e^{-x}sin(2) + xe^{-x}sin(2) + 2e^{-x}cos(2) - 2xe^{-x}cos(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !