There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{-1} - log_{3}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{x} - log_{3}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{x} - log_{3}^{x}\right)}{dx}\\=&\frac{-1}{x^{2}} - (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{3}^{x}}{(3)})}{(ln(3))})\\=& - \frac{1}{xln(3)} - \frac{1}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{xln(3)} - \frac{1}{x^{2}}\right)}{dx}\\=& - \frac{-1}{x^{2}ln(3)} - \frac{-0}{xln^{2}(3)(3)} - \frac{-2}{x^{3}}\\=&\frac{1}{x^{2}ln(3)} + \frac{2}{x^{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{x^{2}ln(3)} + \frac{2}{x^{3}}\right)}{dx}\\=&\frac{-2}{x^{3}ln(3)} + \frac{-0}{x^{2}ln^{2}(3)(3)} + \frac{2*-3}{x^{4}}\\=& - \frac{2}{x^{3}ln(3)} - \frac{6}{x^{4}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - \frac{2}{x^{3}ln(3)} - \frac{6}{x^{4}}\right)}{dx}\\=& - \frac{2*-3}{x^{4}ln(3)} - \frac{2*-0}{x^{3}ln^{2}(3)(3)} - \frac{6*-4}{x^{5}}\\=&\frac{6}{x^{4}ln(3)} + \frac{24}{x^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !