Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-px}{({({p}^{n} + {x}^{n})}^{\frac{1}{n}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -px({p}^{n} + {x}^{n})^{(\frac{-1}{n})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -px({p}^{n} + {x}^{n})^{(\frac{-1}{n})}\right)}{dx}\\=&-p({p}^{n} + {x}^{n})^{(\frac{-1}{n})} - px(({p}^{n} + {x}^{n})^{(\frac{-1}{n})}((0)ln({p}^{n} + {x}^{n}) + \frac{(\frac{-1}{n})(({p}^{n}((0)ln(p) + \frac{(n)(0)}{(p)})) + ({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)})))}{({p}^{n} + {x}^{n})}))\\=&-p({p}^{n} + {x}^{n})^{(\frac{-1}{n})} + \frac{p{x}^{n}({p}^{n} + {x}^{n})^{(\frac{-1}{n})}}{({p}^{n} + {x}^{n})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return