There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(14 + \frac{(11y)}{x})y}{3} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{11}{3}y^{2}}{x} + \frac{14}{3}y - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{11}{3}y^{2}}{x} + \frac{14}{3}y - 1\right)}{dx}\\=&\frac{\frac{11}{3}y^{2}*-1}{x^{2}} + 0 + 0\\=&\frac{-11y^{2}}{3x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !