There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arccos(sqrt(\frac{2}{x})) + \frac{sqrt(2x - 4)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arccos(sqrt(\frac{2}{x})) + \frac{sqrt(2x - 4)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(sqrt(\frac{2}{x})) + \frac{sqrt(2x - 4)}{x}\right)}{dx}\\=&(\frac{-(\frac{2*-\frac{1}{2}}{x^{2}(\frac{2}{x})^{\frac{1}{2}}})}{((1 - (sqrt(\frac{2}{x}))^{2})^{\frac{1}{2}})}) + \frac{-sqrt(2x - 4)}{x^{2}} + \frac{(2 + 0)*\frac{1}{2}}{x(2x - 4)^{\frac{1}{2}}}\\=&\frac{1}{2^{\frac{1}{2}}(-sqrt(\frac{2}{x})^{2} + 1)^{\frac{1}{2}}x^{\frac{3}{2}}} - \frac{sqrt(2x - 4)}{x^{2}} + \frac{1}{(2x - 4)^{\frac{1}{2}}x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !