There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ b + \frac{(\frac{1}{a})(x)}{(c - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = b + \frac{x}{(c - x)a}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( b + \frac{x}{(c - x)a}\right)}{dx}\\=&0 + \frac{(\frac{-(0 - 1)}{(c - x)^{2}})x}{a} + \frac{1}{(c - x)a}\\=&\frac{x}{(c - x)^{2}a} + \frac{1}{(c - x)a}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !