Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x + 1){e}^{(2x + 2)} + 2 + x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{(2x + 2)} + {e}^{(2x + 2)} + x + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{(2x + 2)} + {e}^{(2x + 2)} + x + 2\right)}{dx}\\=&{e}^{(2x + 2)} + x({e}^{(2x + 2)}((2 + 0)ln(e) + \frac{(2x + 2)(0)}{(e)})) + ({e}^{(2x + 2)}((2 + 0)ln(e) + \frac{(2x + 2)(0)}{(e)})) + 1 + 0\\=&3{e}^{(2x + 2)} + 2x{e}^{(2x + 2)} + 1\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return