There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{-8}{x})ln((\frac{e}{(24{x}^{4})}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-8ln(\frac{\frac{1}{24}e}{x^{4}})}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-8ln(\frac{\frac{1}{24}e}{x^{4}})}{x}\right)}{dx}\\=&\frac{-8*-ln(\frac{\frac{1}{24}e}{x^{4}})}{x^{2}} - \frac{8(\frac{\frac{1}{24}*-4e}{x^{5}} + \frac{\frac{1}{24}*0}{x^{4}})}{x(\frac{\frac{1}{24}e}{x^{4}})}\\=&\frac{8ln(\frac{\frac{1}{24}e}{x^{4}})}{x^{2}} + \frac{32}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !