There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(ln(x) + {x}^{2} - x)}{(x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{(x - 1)} + \frac{x^{2}}{(x - 1)} - \frac{x}{(x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{(x - 1)} + \frac{x^{2}}{(x - 1)} - \frac{x}{(x - 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 1)^{2}})ln(x) + \frac{1}{(x - 1)(x)} + (\frac{-(1 + 0)}{(x - 1)^{2}})x^{2} + \frac{2x}{(x - 1)} - (\frac{-(1 + 0)}{(x - 1)^{2}})x - \frac{1}{(x - 1)}\\=&\frac{-ln(x)}{(x - 1)^{2}} + \frac{1}{(x - 1)x} - \frac{x^{2}}{(x - 1)^{2}} + \frac{2x}{(x - 1)} + \frac{x}{(x - 1)^{2}} - \frac{1}{(x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !