There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-a{x}^{2}}{(-b{x}^{2} + jcx + d)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-ax^{2}}{(-bx^{2} + jcx + d)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-ax^{2}}{(-bx^{2} + jcx + d)}\right)}{dx}\\=&-(\frac{-(-b*2x + jc + 0)}{(-bx^{2} + jcx + d)^{2}})ax^{2} - \frac{a*2x}{(-bx^{2} + jcx + d)}\\=&\frac{-2abx^{3}}{(-bx^{2} + jcx + d)^{2}} + \frac{ajcx^{2}}{(-bx^{2} + jcx + d)^{2}} - \frac{2ax}{(-bx^{2} + jcx + d)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !