Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of t is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{(jwt)}{e}^{(jwt)}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(2(jwt))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(2(jwt))}\right)}{dt}\\=&({e}^{(2(jwt))}((2(jw))ln(e) + \frac{(2(jwt))(0)}{(e)}))\\=&2jw{e}^{(2jwt)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2jw{e}^{(2jwt)}\right)}{dt}\\=&2jw({e}^{(2jwt)}((2jw)ln(e) + \frac{(2jwt)(0)}{(e)}))\\=&4j^{2}w^{2}{e}^{(2jwt)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return