There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(x - 1)}{({e}^{(x - 1)})}) + ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{(-x + 1)} - {e}^{(-x + 1)} + ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{(-x + 1)} - {e}^{(-x + 1)} + ln(x)\right)}{dx}\\=&{e}^{(-x + 1)} + x({e}^{(-x + 1)}((-1 + 0)ln(e) + \frac{(-x + 1)(0)}{(e)})) - ({e}^{(-x + 1)}((-1 + 0)ln(e) + \frac{(-x + 1)(0)}{(e)})) + \frac{1}{(x)}\\=&2{e}^{(-x + 1)} - x{e}^{(-x + 1)} + \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !