There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {(sin(x + 1))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin^{2}(x + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin^{2}(x + 1)\right)}{dx}\\=&2sin(x + 1)cos(x + 1)(1 + 0)\\=&2sin(x + 1)cos(x + 1)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2sin(x + 1)cos(x + 1)\right)}{dx}\\=&2cos(x + 1)(1 + 0)cos(x + 1) + 2sin(x + 1)*-sin(x + 1)(1 + 0)\\=&2cos^{2}(x + 1) - 2sin^{2}(x + 1)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2cos^{2}(x + 1) - 2sin^{2}(x + 1)\right)}{dx}\\=&2*-2cos(x + 1)sin(x + 1)(1 + 0) - 2*2sin(x + 1)cos(x + 1)(1 + 0)\\=&-8sin(x + 1)cos(x + 1)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !