Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(6{x}^{5} + 4{x}^{3})}{(3{x}^{2} + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6x^{5}}{(3x^{2} + 2)} + \frac{4x^{3}}{(3x^{2} + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6x^{5}}{(3x^{2} + 2)} + \frac{4x^{3}}{(3x^{2} + 2)}\right)}{dx}\\=&6(\frac{-(3*2x + 0)}{(3x^{2} + 2)^{2}})x^{5} + \frac{6*5x^{4}}{(3x^{2} + 2)} + 4(\frac{-(3*2x + 0)}{(3x^{2} + 2)^{2}})x^{3} + \frac{4*3x^{2}}{(3x^{2} + 2)}\\=&\frac{-36x^{6}}{(3x^{2} + 2)^{2}} + \frac{30x^{4}}{(3x^{2} + 2)} - \frac{24x^{4}}{(3x^{2} + 2)^{2}} + \frac{12x^{2}}{(3x^{2} + 2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return