There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2{x}^{3} - 3{e}^{x} + {2}^{x} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{3} - 3{e}^{x} + {2}^{x} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{3} - 3{e}^{x} + {2}^{x} + 1\right)}{dx}\\=&2*3x^{2} - 3({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + ({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0\\=&6x^{2} + {2}^{x}ln(2) - 3{e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !