There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(\frac{7}{x})} - \frac{7e}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(\frac{7}{x})} - \frac{7e}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(\frac{7}{x})} - \frac{7e}{x}\right)}{dx}\\=&({e}^{(\frac{7}{x})}((\frac{7*-1}{x^{2}})ln(e) + \frac{(\frac{7}{x})(0)}{(e)})) - \frac{7*-e}{x^{2}} - \frac{7*0}{x}\\=&\frac{-7{e}^{(\frac{7}{x})}}{x^{2}} + \frac{7e}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !