There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2x - 5){x}^{(\frac{3}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x{x}^{\frac{3}{2}} - 5{x}^{\frac{3}{2}}\right)}{dx}\\=&2{x}^{\frac{3}{2}} + 2x({x}^{\frac{3}{2}}((0)ln(x) + \frac{(\frac{3}{2})(1)}{(x)})) - 5({x}^{\frac{3}{2}}((0)ln(x) + \frac{(\frac{3}{2})(1)}{(x)}))\\=&5x^{\frac{3}{2}} - \frac{15x^{\frac{1}{2}}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !