There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arccos(-0.2576 - 0.7424cos(24x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arccos(-0.7424cos(24x) - 0.2576)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(-0.7424cos(24x) - 0.2576)\right)}{dx}\\=&(\frac{-(-0.7424*-sin(24x)*24 + 0)}{((1 - (-0.7424cos(24x) - 0.2576)^{2})^{\frac{1}{2}})})\\=&\frac{-17.8176sin(24x)}{(-0.55115776cos(24x)cos(24x) - 0.19124224cos(24x) - 0.19124224cos(24x) + 0.93364224)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !