Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan({e}^{x}) - ln(sqrt(\frac{{e}^{2}x}{(2 + {e}^{2}x)})h)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan({e}^{x}) - ln(hsqrt(\frac{xe^{2}}{(xe^{2} + 2)}))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan({e}^{x}) - ln(hsqrt(\frac{xe^{2}}{(xe^{2} + 2)}))\right)}{dx}\\=&(\frac{(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(1 + ({e}^{x})^{2})}) - \frac{h((\frac{-(e^{2} + x*2e*0 + 0)}{(xe^{2} + 2)^{2}})xe^{2} + \frac{e^{2}}{(xe^{2} + 2)} + \frac{x*2e*0}{(xe^{2} + 2)})*\frac{1}{2}}{(hsqrt(\frac{xe^{2}}{(xe^{2} + 2)}))(\frac{xe^{2}}{(xe^{2} + 2)})^{\frac{1}{2}}}\\=&\frac{{e}^{x}}{({e}^{(2x)} + 1)} + \frac{x^{\frac{1}{2}}e^{3}}{2(xe^{2} + 2)^{\frac{3}{2}}sqrt(\frac{xe^{2}}{(xe^{2} + 2)})} - \frac{e}{2(xe^{2} + 2)^{\frac{1}{2}}x^{\frac{1}{2}}sqrt(\frac{xe^{2}}{(xe^{2} + 2)})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return