There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sec(2)xcos(x)csc(15)xsinh(6)xtan(19)xcot(8)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5}cos(x)tan(19)cot(8)sec(2)csc(15)sinh(6)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5}cos(x)tan(19)cot(8)sec(2)csc(15)sinh(6)\right)}{dx}\\=&5x^{4}cos(x)tan(19)cot(8)sec(2)csc(15)sinh(6) + x^{5}*-sin(x)tan(19)cot(8)sec(2)csc(15)sinh(6) + x^{5}cos(x)sec^{2}(19)(0)cot(8)sec(2)csc(15)sinh(6) + x^{5}cos(x)tan(19)*-csc^{2}(8)*0sec(2)csc(15)sinh(6) + x^{5}cos(x)tan(19)cot(8)sec(2)tan(2)*0csc(15)sinh(6) + x^{5}cos(x)tan(19)cot(8)sec(2)*-csc(15)cot(15)*0sinh(6) + x^{5}cos(x)tan(19)cot(8)sec(2)csc(15)cosh(6)*0\\=&5x^{4}cos(x)tan(19)cot(8)sec(2)csc(15)sinh(6) - x^{5}sin(x)tan(19)cot(8)sec(2)csc(15)sinh(6)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !