There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {e}^{(4x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(4x)}\right)}{dx}\\=&({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)}))\\=&4{e}^{(4x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4{e}^{(4x)}\right)}{dx}\\=&4({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)}))\\=&16{e}^{(4x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 16{e}^{(4x)}\right)}{dx}\\=&16({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)}))\\=&64{e}^{(4x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 64{e}^{(4x)}\right)}{dx}\\=&64({e}^{(4x)}((4)ln(e) + \frac{(4x)(0)}{(e)}))\\=&256{e}^{(4x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !