There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x + 2)}^{2}ln(x) + {e^{x}}^{2} + 5\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}ln(x) + 4xln(x) + 4ln(x) + e^{{x}*{2}} + 5\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}ln(x) + 4xln(x) + 4ln(x) + e^{{x}*{2}} + 5\right)}{dx}\\=&2xln(x) + \frac{x^{2}}{(x)} + 4ln(x) + \frac{4x}{(x)} + \frac{4}{(x)} + 2e^{x}e^{x} + 0\\=&2xln(x) + x + 4ln(x) + \frac{4}{x} + 2e^{{x}*{2}} + 4\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !