There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xe^{2x}{\frac{1}{(x + 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xe^{2x}}{(x + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xe^{2x}}{(x + 1)^{2}}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x + 1)^{3}})xe^{2x} + \frac{e^{2x}}{(x + 1)^{2}} + \frac{xe^{2x}*2}{(x + 1)^{2}}\\=&\frac{-2xe^{2x}}{(x + 1)^{3}} + \frac{e^{2x}}{(x + 1)^{2}} + \frac{2xe^{2x}}{(x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !