Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(x)({x}^{2} - 3x + 2)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}sqrt(x) - 3xsqrt(x) + 2sqrt(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}sqrt(x) - 3xsqrt(x) + 2sqrt(x)\right)}{dx}\\=&2xsqrt(x) + \frac{x^{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} - 3sqrt(x) - \frac{3x*\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{2*\frac{1}{2}}{(x)^{\frac{1}{2}}}\\=&2xsqrt(x) + \frac{x^{\frac{3}{2}}}{2} - 3sqrt(x) - \frac{3x^{\frac{1}{2}}}{2} + \frac{1}{x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return