There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(2{x}^{3} - 5{x}^{2} + 14x - 6){x}^{2}}{6}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x^{5} - \frac{5}{6}x^{4} + \frac{7}{3}x^{3} - x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x^{5} - \frac{5}{6}x^{4} + \frac{7}{3}x^{3} - x^{2}\right)}{dx}\\=&\frac{1}{3}*5x^{4} - \frac{5}{6}*4x^{3} + \frac{7}{3}*3x^{2} - 2x\\=&\frac{5x^{4}}{3} - \frac{10x^{3}}{3} + 7x^{2} - 2x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{5x^{4}}{3} - \frac{10x^{3}}{3} + 7x^{2} - 2x\right)}{dx}\\=&\frac{5*4x^{3}}{3} - \frac{10*3x^{2}}{3} + 7*2x - 2\\=&\frac{20x^{3}}{3} - 10x^{2} + 14x - 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !