Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(ax*3 + bx*2 + cx + d)}{(ex*3 + fx*2 + gx + h)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3ax}{(3xe + 2fx + gx + h)} + \frac{2bx}{(3xe + 2fx + gx + h)} + \frac{cx}{(3xe + 2fx + gx + h)} + \frac{d}{(3xe + 2fx + gx + h)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3ax}{(3xe + 2fx + gx + h)} + \frac{2bx}{(3xe + 2fx + gx + h)} + \frac{cx}{(3xe + 2fx + gx + h)} + \frac{d}{(3xe + 2fx + gx + h)}\right)}{dx}\\=&3(\frac{-(3e + 3x*0 + 2f + g + 0)}{(3xe + 2fx + gx + h)^{2}})ax + \frac{3a}{(3xe + 2fx + gx + h)} + 2(\frac{-(3e + 3x*0 + 2f + g + 0)}{(3xe + 2fx + gx + h)^{2}})bx + \frac{2b}{(3xe + 2fx + gx + h)} + (\frac{-(3e + 3x*0 + 2f + g + 0)}{(3xe + 2fx + gx + h)^{2}})cx + \frac{c}{(3xe + 2fx + gx + h)} + (\frac{-(3e + 3x*0 + 2f + g + 0)}{(3xe + 2fx + gx + h)^{2}})d + 0\\=&\frac{-9axe}{(3xe + 2fx + gx + h)^{2}} - \frac{6afx}{(3xe + 2fx + gx + h)^{2}} - \frac{3agx}{(3xe + 2fx + gx + h)^{2}} + \frac{3a}{(3xe + 2fx + gx + h)} - \frac{6bxe}{(3xe + 2fx + gx + h)^{2}} - \frac{4bfx}{(3xe + 2fx + gx + h)^{2}} - \frac{2bgx}{(3xe + 2fx + gx + h)^{2}} + \frac{2b}{(3xe + 2fx + gx + h)} - \frac{3cxe}{(3xe + 2fx + gx + h)^{2}} - \frac{2cfx}{(3xe + 2fx + gx + h)^{2}} - \frac{cgx}{(3xe + 2fx + gx + h)^{2}} + \frac{c}{(3xe + 2fx + gx + h)} - \frac{3de}{(3xe + 2fx + gx + h)^{2}} - \frac{2df}{(3xe + 2fx + gx + h)^{2}} - \frac{dg}{(3xe + 2fx + gx + h)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return