There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{(sqr(x))}qr(x)}{s}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{qrx{e}^{(sqrx)}}{s}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{qrx{e}^{(sqrx)}}{s}\right)}{dx}\\=&\frac{qr{e}^{(sqrx)}}{s} + \frac{qrx({e}^{(sqrx)}((sqr)ln(e) + \frac{(sqrx)(0)}{(e)}))}{s}\\=&\frac{qr{e}^{(sqrx)}}{s} + q^{2}r^{2}x{e}^{(sqrx)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !