There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{ax}{(1 - bx)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ax}{(-bx + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ax}{(-bx + 1)}\right)}{dx}\\=&(\frac{-(-b + 0)}{(-bx + 1)^{2}})ax + \frac{a}{(-bx + 1)}\\=&\frac{abx}{(-bx + 1)^{2}} + \frac{a}{(-bx + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{abx}{(-bx + 1)^{2}} + \frac{a}{(-bx + 1)}\right)}{dx}\\=&(\frac{-2(-b + 0)}{(-bx + 1)^{3}})abx + \frac{ab}{(-bx + 1)^{2}} + (\frac{-(-b + 0)}{(-bx + 1)^{2}})a + 0\\=&\frac{2ab^{2}x}{(-bx + 1)^{3}} + \frac{2ab}{(-bx + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !