There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({x}^{2} + \frac{2x}{3} + \frac{1}{3})e^{-3}x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}e^{-3} + \frac{2}{3}x^{2}e^{-3} + \frac{1}{3}xe^{-3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}e^{-3} + \frac{2}{3}x^{2}e^{-3} + \frac{1}{3}xe^{-3}\right)}{dx}\\=&3x^{2}e^{-3} + x^{3}e^{-3}*0 + \frac{2}{3}*2xe^{-3} + \frac{2}{3}x^{2}e^{-3}*0 + \frac{1}{3}e^{-3} + \frac{1}{3}xe^{-3}*0\\=&3x^{2}e^{-3} + \frac{4xe^{-3}}{3} + \frac{e^{-3}}{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2}e^{-3} + \frac{4xe^{-3}}{3} + \frac{e^{-3}}{3}\right)}{dx}\\=&3*2xe^{-3} + 3x^{2}e^{-3}*0 + \frac{4e^{-3}}{3} + \frac{4xe^{-3}*0}{3} + \frac{e^{-3}*0}{3}\\=&6xe^{-3} + \frac{4e^{-3}}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !