Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{-3}x({x}^{2} + \frac{2x}{3} + \frac{1}{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}e^{-3} + \frac{2}{3}x^{2}e^{-3} + \frac{1}{3}xe^{-3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}e^{-3} + \frac{2}{3}x^{2}e^{-3} + \frac{1}{3}xe^{-3}\right)}{dx}\\=&3x^{2}e^{-3} + x^{3}e^{-3}*0 + \frac{2}{3}*2xe^{-3} + \frac{2}{3}x^{2}e^{-3}*0 + \frac{1}{3}e^{-3} + \frac{1}{3}xe^{-3}*0\\=&3x^{2}e^{-3} + \frac{4xe^{-3}}{3} + \frac{e^{-3}}{3}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return