There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {a}^{t} - \frac{{b}^{t}}{t}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {a}^{t} - \frac{{b}^{t}}{t}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {a}^{t} - \frac{{b}^{t}}{t}\right)}{dt}\\=&({a}^{t}((1)ln(a) + \frac{(t)(0)}{(a)})) - \frac{-{b}^{t}}{t^{2}} - \frac{({b}^{t}((1)ln(b) + \frac{(t)(0)}{(b)}))}{t}\\=&{a}^{t}ln(a) - \frac{{b}^{t}ln(b)}{t} + \frac{{b}^{t}}{t^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !