Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x - {e}^{-1})}^{2}{\frac{1}{e}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2x{\frac{1}{e}}^{x}}{e} + x^{2}{\frac{1}{e}}^{x} + \frac{{\frac{1}{e}}^{x}}{e^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2x{\frac{1}{e}}^{x}}{e} + x^{2}{\frac{1}{e}}^{x} + \frac{{\frac{1}{e}}^{x}}{e^{2}}\right)}{dx}\\=& - \frac{2{\frac{1}{e}}^{x}}{e} - \frac{2x({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))}{e} - \frac{2x{\frac{1}{e}}^{x}*-0}{e^{2}} + 2x{\frac{1}{e}}^{x} + x^{2}({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) + \frac{({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))}{e^{2}} + \frac{{\frac{1}{e}}^{x}*-2*0}{e^{3}}\\=& - \frac{2{\frac{1}{e}}^{x}}{e} + \frac{2x{\frac{1}{e}}^{x}}{e} + 2x{\frac{1}{e}}^{x} - x^{2}{\frac{1}{e}}^{x} - \frac{{\frac{1}{e}}^{x}}{e^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return