There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1200}{(1200 - {x}^{\frac{2}{5}})} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1200}{(-x^{\frac{2}{5}} + 1200)} - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1200}{(-x^{\frac{2}{5}} + 1200)} - 1\right)}{dx}\\=&1200(\frac{-(\frac{-\frac{2}{5}}{x^{\frac{3}{5}}} + 0)}{(-x^{\frac{2}{5}} + 1200)^{2}}) + 0\\=&\frac{480}{(-x^{\frac{2}{5}} + 1200)^{2}x^{\frac{3}{5}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !