Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ 2sqrt((2{x}^{2} + 10)) - 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2sqrt(2x^{2} + 10) - 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2sqrt(2x^{2} + 10) - 2x\right)}{dx}\\=&\frac{2(2*2x + 0)*\frac{1}{2}}{(2x^{2} + 10)^{\frac{1}{2}}} - 2\\=&\frac{4x}{(2x^{2} + 10)^{\frac{1}{2}}} - 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{4x}{(2x^{2} + 10)^{\frac{1}{2}}} - 2\right)}{dx}\\=&4(\frac{\frac{-1}{2}(2*2x + 0)}{(2x^{2} + 10)^{\frac{3}{2}}})x + \frac{4}{(2x^{2} + 10)^{\frac{1}{2}}} + 0\\=&\frac{-8x^{2}}{(2x^{2} + 10)^{\frac{3}{2}}} + \frac{4}{(2x^{2} + 10)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-8x^{2}}{(2x^{2} + 10)^{\frac{3}{2}}} + \frac{4}{(2x^{2} + 10)^{\frac{1}{2}}}\right)}{dx}\\=&-8(\frac{\frac{-3}{2}(2*2x + 0)}{(2x^{2} + 10)^{\frac{5}{2}}})x^{2} - \frac{8*2x}{(2x^{2} + 10)^{\frac{3}{2}}} + 4(\frac{\frac{-1}{2}(2*2x + 0)}{(2x^{2} + 10)^{\frac{3}{2}}})\\=&\frac{48x^{3}}{(2x^{2} + 10)^{\frac{5}{2}}} - \frac{24x}{(2x^{2} + 10)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return