Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt((1 + cos(2)x)(2 - cos(2)x)) + sin(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(xcos(2) - x^{2}cos^{2}(2) + 2) + xsin(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(xcos(2) - x^{2}cos^{2}(2) + 2) + xsin(2)\right)}{dx}\\=&\frac{(cos(2) + x*-sin(2)*0 - 2xcos^{2}(2) - x^{2}*-2cos(2)sin(2)*0 + 0)*\frac{1}{2}}{(xcos(2) - x^{2}cos^{2}(2) + 2)^{\frac{1}{2}}} + sin(2) + xcos(2)*0\\=&\frac{cos(2)}{2(xcos(2) - x^{2}cos^{2}(2) + 2)^{\frac{1}{2}}} - \frac{xcos^{2}(2)}{(xcos(2) - x^{2}cos^{2}(2) + 2)^{\frac{1}{2}}} + sin(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return