There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 4{x}^{3} + {e}^{x}ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{3} + {e}^{x}ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{3} + {e}^{x}ln(x)\right)}{dx}\\=&4*3x^{2} + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(x) + \frac{{e}^{x}}{(x)}\\=&\frac{{e}^{x}}{x} + {e}^{x}ln(x) + 12x^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{e}^{x}}{x} + {e}^{x}ln(x) + 12x^{2}\right)}{dx}\\=&\frac{-{e}^{x}}{x^{2}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x} + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(x) + \frac{{e}^{x}}{(x)} + 12*2x\\=& - \frac{{e}^{x}}{x^{2}} + \frac{2{e}^{x}}{x} + {e}^{x}ln(x) + 24x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !