There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({(2 - x)}^{5}sqrt(x) + 1){\frac{1}{(x + 3)}}^{7}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-x^{5}sqrt(x)}{(x + 3)^{7}} + \frac{10x^{4}sqrt(x)}{(x + 3)^{7}} - \frac{40x^{3}sqrt(x)}{(x + 3)^{7}} + \frac{80x^{2}sqrt(x)}{(x + 3)^{7}} - \frac{80xsqrt(x)}{(x + 3)^{7}} + \frac{32sqrt(x)}{(x + 3)^{7}} + \frac{1}{(x + 3)^{7}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-x^{5}sqrt(x)}{(x + 3)^{7}} + \frac{10x^{4}sqrt(x)}{(x + 3)^{7}} - \frac{40x^{3}sqrt(x)}{(x + 3)^{7}} + \frac{80x^{2}sqrt(x)}{(x + 3)^{7}} - \frac{80xsqrt(x)}{(x + 3)^{7}} + \frac{32sqrt(x)}{(x + 3)^{7}} + \frac{1}{(x + 3)^{7}}\right)}{dx}\\=&-(\frac{-7(1 + 0)}{(x + 3)^{8}})x^{5}sqrt(x) - \frac{5x^{4}sqrt(x)}{(x + 3)^{7}} - \frac{x^{5}*\frac{1}{2}}{(x + 3)^{7}(x)^{\frac{1}{2}}} + 10(\frac{-7(1 + 0)}{(x + 3)^{8}})x^{4}sqrt(x) + \frac{10*4x^{3}sqrt(x)}{(x + 3)^{7}} + \frac{10x^{4}*\frac{1}{2}}{(x + 3)^{7}(x)^{\frac{1}{2}}} - 40(\frac{-7(1 + 0)}{(x + 3)^{8}})x^{3}sqrt(x) - \frac{40*3x^{2}sqrt(x)}{(x + 3)^{7}} - \frac{40x^{3}*\frac{1}{2}}{(x + 3)^{7}(x)^{\frac{1}{2}}} + 80(\frac{-7(1 + 0)}{(x + 3)^{8}})x^{2}sqrt(x) + \frac{80*2xsqrt(x)}{(x + 3)^{7}} + \frac{80x^{2}*\frac{1}{2}}{(x + 3)^{7}(x)^{\frac{1}{2}}} - 80(\frac{-7(1 + 0)}{(x + 3)^{8}})xsqrt(x) - \frac{80sqrt(x)}{(x + 3)^{7}} - \frac{80x*\frac{1}{2}}{(x + 3)^{7}(x)^{\frac{1}{2}}} + 32(\frac{-7(1 + 0)}{(x + 3)^{8}})sqrt(x) + \frac{32*\frac{1}{2}}{(x + 3)^{7}(x)^{\frac{1}{2}}} + (\frac{-7(1 + 0)}{(x + 3)^{8}})\\=&\frac{7x^{5}sqrt(x)}{(x + 3)^{8}} - \frac{5x^{4}sqrt(x)}{(x + 3)^{7}} - \frac{x^{\frac{9}{2}}}{2(x + 3)^{7}} - \frac{70x^{4}sqrt(x)}{(x + 3)^{8}} + \frac{40x^{3}sqrt(x)}{(x + 3)^{7}} + \frac{5x^{\frac{7}{2}}}{(x + 3)^{7}} + \frac{280x^{3}sqrt(x)}{(x + 3)^{8}} - \frac{120x^{2}sqrt(x)}{(x + 3)^{7}} - \frac{20x^{\frac{5}{2}}}{(x + 3)^{7}} - \frac{560x^{2}sqrt(x)}{(x + 3)^{8}} + \frac{160xsqrt(x)}{(x + 3)^{7}} + \frac{40x^{\frac{3}{2}}}{(x + 3)^{7}} + \frac{560xsqrt(x)}{(x + 3)^{8}} - \frac{80sqrt(x)}{(x + 3)^{7}} - \frac{40x^{\frac{1}{2}}}{(x + 3)^{7}} - \frac{224sqrt(x)}{(x + 3)^{8}} + \frac{16}{(x + 3)^{7}x^{\frac{1}{2}}} - \frac{7}{(x + 3)^{8}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !