Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(cos(2x))}^{3} - ((sin(x))*3)sin(3x) + ((cos(x))*3)cos(3x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3cos(x)cos(3x) - 3sin(x)sin(3x) + cos^{3}(2x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3cos(x)cos(3x) - 3sin(x)sin(3x) + cos^{3}(2x)\right)}{dx}\\=&3*-sin(x)cos(3x) + 3cos(x)*-sin(3x)*3 - 3cos(x)sin(3x) - 3sin(x)cos(3x)*3 + -3cos^{2}(2x)sin(2x)*2\\=&-12sin(x)cos(3x) - 12sin(3x)cos(x) - 6sin(2x)cos^{2}(2x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return