There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (3{x}^{3} - {x}^{2} - 2{x}^{-2})tan(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3x^{3}tan(x) - x^{2}tan(x) - \frac{2tan(x)}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x^{3}tan(x) - x^{2}tan(x) - \frac{2tan(x)}{x^{2}}\right)}{dx}\\=&3*3x^{2}tan(x) + 3x^{3}sec^{2}(x)(1) - 2xtan(x) - x^{2}sec^{2}(x)(1) - \frac{2*-2tan(x)}{x^{3}} - \frac{2sec^{2}(x)(1)}{x^{2}}\\=&9x^{2}tan(x) + 3x^{3}sec^{2}(x) - 2xtan(x) - x^{2}sec^{2}(x) + \frac{4tan(x)}{x^{3}} - \frac{2sec^{2}(x)}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !