There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x + 1)sqrt(x - 1)}{sqrt(sqrt(x + 2))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xsqrt(x - 1)}{sqrt(sqrt(x + 2))} + \frac{sqrt(x - 1)}{sqrt(sqrt(x + 2))}\right)}{dx}\\=&\frac{sqrt(x - 1)}{sqrt(sqrt(x + 2))} + \frac{x(1 + 0)*\frac{1}{2}}{(x - 1)^{\frac{1}{2}}sqrt(sqrt(x + 2))} + \frac{xsqrt(x - 1)*-(1 + 0)*\frac{1}{2}*\frac{1}{2}}{(sqrt(x + 2))(x + 2)^{\frac{1}{2}}(sqrt(x + 2))^{\frac{1}{2}}} + \frac{(1 + 0)*\frac{1}{2}}{(x - 1)^{\frac{1}{2}}sqrt(sqrt(x + 2))} + \frac{sqrt(x - 1)*-(1 + 0)*\frac{1}{2}*\frac{1}{2}}{(sqrt(x + 2))(x + 2)^{\frac{1}{2}}(sqrt(x + 2))^{\frac{1}{2}}}\\=&\frac{sqrt(x - 1)}{sqrt(sqrt(x + 2))} + \frac{x}{2(x - 1)^{\frac{1}{2}}sqrt(sqrt(x + 2))} - \frac{xsqrt(x - 1)}{4(x + 2)^{\frac{1}{2}}sqrt(x + 2)^{\frac{3}{2}}} + \frac{1}{2(x - 1)^{\frac{1}{2}}sqrt(sqrt(x + 2))} - \frac{sqrt(x - 1)}{4(x + 2)^{\frac{1}{2}}sqrt(x + 2)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !