There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{3}x(sin(2)x + cox*3x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}e^{3}sin(2) + 3cox^{3}e^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}e^{3}sin(2) + 3cox^{3}e^{3}\right)}{dx}\\=&2xe^{3}sin(2) + x^{2}e^{3}*0sin(2) + x^{2}e^{3}cos(2)*0 + 3co*3x^{2}e^{3} + 3cox^{3}e^{3}*0\\=&2xe^{3}sin(2) + 9cox^{2}e^{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !